
Supporting Information

Inclusion networks of a calix[5]arene-based exoditopic receptor and long-chain alkyldiammonium ions

Domenico Garozzo,[‡] Giuseppe Gattuso,[§] Franz H. Kohnke,[§] Anna Notti,[§] Sebastiano Pappalardo,[¶] Melchiorre F. Parisi,^{§,*} Ilenia Pisagatti,[§] Andrew J. P. White,[⊥] and David J. Williams[⊥]

[‡]CNR, ICTP Catania, Viale Regina Margherita 6, I-95125 Catania, Italy, [§]Dipartimento di Chimica Organica e Biologica, Università di Messina, Salita Sperone 31, I-98166 Messina, Italy, [¶]Dipartimento di Scienze Chimiche, Università di Catania, Viale A. Doria 6, I-95125 Catania, Italy, and [⊥]Department of Chemistry, Imperial College, South Kensington, London SW7 2AZ, UK

^{*}Corresponding author e-mail: mparisi@unime.it

Experimental Section

General. Melting points were determined on a Kofler hot stage apparatus and are uncorrected. Unless otherwise stated, ¹H and ¹³C NMR spectra were recorded at room temperature in CDCl₃, at 300 and 75 MHz respectively, using TMS as an internal standard. ¹³C NMR spectra were acquired with the attached proton test (APT) technique. Electrospray ionization mass spectra (ESI MS) were obtained on an Applied Biosystems, MarinerTM ESI TOF quadrupole mass spectrometer. DMF and CH₃CN were dried by standard methods¹ prior to use; other chemicals were reagent grade and were used without further purification. Column chromatography was performed on silica gel (Merck, 230–400 mesh). All reactions were carried out under an argon atmosphere. *p-tert*-Butylcalix[5]arene 1 was synthesized according to a literature procedure.²

Compound 2

A suspension of **1** (811 mg, 1.0 mmol) and CsF (760 mg, 5.0 mmol) in DMF (50 mL) was stirred at 50 °C for 1 h and then cooled at rt. α , α '-Dibromo-p-xylene (119 mg, 0.5 mmol) in DMF (40 mL) was added dropwise and the resulting mixture was stirred at rt for an additional period of 24 h. Solvent removal under reduced pressure gave a residue which was partitioned between water and CH₂Cl₂. The organic layer was separated, dried over MgSO₄, and concentrated. The resulting oil was purified by column chromatography (toluene) to afford bis-calixarene **2** in 44% yield. Mp 207–210 °C (CH₃CN/CH₂Cl₂); ¹H NMR δ 1.08, 1.22, 1.27 (s, 1:2:2, 90 H), 3.37, 3.41, 3.48 (d, J = 14.1 Hz, 2:1:2, 10 H), 4.03, 4.08, 4.45 (d, J = 14.1 Hz, 1:2:2, 10 H), 5.25 (s, 4 H), 7.13–7.20 (m, 20 H), 7.69, 7.81 (bs, 1:1, 8 H, OH, exchangeable with D₂O), 7.85 (s, 4 H) ppm; ¹³C NMR δ 30.8, 31.2, 31.36, 31.43, 31.6, 33.84, 33.86, 34.1, 77.2, 125.4, 125.7, 125.8, 126.0, 126.3, 126.42, 126.46, 128.6, 126.9, 132.2, 136.7, 142.6, 143.7, 147.5, 147.6, 149.2, 150.1 ppm; ESI MS, m/z 1724 [M + H]⁺. Anal. Calcd for C₁₁₈H₁₄₆O₁₀: C, 82.19; H, 8.53. Found: C, 81.95; H, 8.69.

Compound 3

A mixture of **2** (0.604 g, 0.35 mmol), 4-methypentyl tosylate (2.692 g, 10.50 mmol) and anhydrous K_2CO_3 (1.451 g, 10.50 mmol) in CH_3CN (70 mL) was stirred under reflux for 8 days. Excess of base and inorganic salts were collected by filtration and thoroughly washed with CH_2Cl_2 . The combined organic layer was concentrated and the residual solid was triturated with MeOH, collected by suction filtration and recrystallized from CH_3CN/CH_2Cl_2 (58% yield). Mp 272–274 °C; ¹H NMR δ 0.83, 0.97, 1.19 (s, 1:2:2, 90 H), 0.87, 0.88, 0.93 (d, J = 6.6 Hz, 1:1:2, 48 H), 1.2–1.4 (m, 8 H), 1.48–1.66 (m,

¹ Perrin, D. D.; Armarego, W. L. F. in *Purification of Laboratory Chemicals*, Ed. Pergamon Press, 1989.

² Stewart, D. R.; Gutsche, C. D. Org. Prep. Proced. Int. **1993**, 25, 137–139.

16 H), 1.71–1.93 (m, 16 H), 3.18, 3.23, 3.26 (d, J = 13.9 Hz, 2:2:1, 10 H), 3.44–3.54 (m, 8 H), 3.61–3.67 (m, 8 H), 4.51, 4.53, 4.54 (d, J = 13.9 Hz, 2:1:2, 10 H), 4.82 (s, 4 H), 6.70 (s, 4 H), 6.85, 7.08, (pseudo-s, 1:1, 16 H), 7.45 (s, 4 H) ppm; ¹³C NMR δ 22.75, 22.79, 22.84, 22.9, 28.18, 28.21, 28.23, 29.3, 29.7, 31.2, 31.3, 31.5, 33.8, 33.9, 34.0, 35.0, 35.1, 74.0, 74.3, 75.6, 124.8, 125.0, 125.2. 125.9, 126.0, 128.2, 133.60, 133.64, 133.8, 134.05, 134.08, 137.5, 144.45, 144.47, 144.8, 151.8, 152.6, 153.1 ppm; ESI MS, m/z 2414.0 [(M + NH₄)]⁺, 1215.9 [(M + 2NH₄)]²⁺. Anal. Calcd for C₁₆₆H₂₄₂O₁₀: C, 83.15; H, 10.17. Found: C, 83.52; H, 10.49.

¹H NMR complexation experiments

In the titration experiments of bis-calixarene **3** with dipicrates **4** and **5** samples were prepared in the NMR tube by mixing stock solutions of host $(3.0\times10^{-3} \text{ M in CDCl}_3)$ and guests $(3.6\times10^{-2} \text{ M in CD}_3\text{OD})$ to a final CDCl₃/CD₃OD, (2/1, v/v; 0.750 mL) solvent mixture. Host concentration was kept constant at 2.0×10^{-3} M whereas guest concentration was progressively increased during the experiment $(5.0\times10^{-4}, 1.0\times10^{-3}, 3.0\times10^{-3}, 6.0\times10^{-3}, \text{ and } 1.2\times10^{-2} \text{ M}$; see traces b–f of Figure 4). Dilution experiments were carried out in CDCl₃/CD₃OD (9/1, v/v). The most concentrated **3/5** $(5.0\times10^{-2}/4.5\times10^{-2} \text{ M/M}$; trace b of Figure 5) sample was obtained by adding a CDCl₃ solution of **3** to a suspension of **5** in CD₃OD, followed by sonication till complete solubilization of the salt. Aliquots of this stock solution were then used to prepare the more diluted **3/5** solutions $(1.0\times10^{-2}/9.0\times10^{-3}, 5.0\times10^{-3}/4.5\times10^{-3}, 1.0\times10^{-3}/9.0\times10^{-4}, 5.0\times10^{-4}/4.5\times10^{-4} \text{ M/M}$; see traces c–f of Figure 5) employed in the experiments. Spectra were recorded at 300 MHz at 22 ± 1 °C.

Selected ¹H NMR data of the various assemblies formed between 3 and 4 or 5

4C3 (type A): in CDCl₃/CD₃OD (2/1, v/v) δ –1.83 (br m, β -CH₂, 2 H), –1.12 (br t, α -CH₂, 2 H), –0.64 (br m, γ -CH₂, 2 H), –0.06 (br m, δ -CH₂, 2 H), 0.73 (br m, ε -CH₂, 2 H), 2.85 (t, J = 7.8 Hz, α '-CH₂, 2 H), 4.89, 5.03 (s, XyCH₂, 1:1, 4 H), 6.78 (s, 2 H), 6.92 (pseudo-s, 4 H), 7.04 and 7.10 (AB, J = 2.3 Hz, 4 H), 7.08 (s, 2 H), 7.18 and 7.22 (AB, J = 2.2 Hz, 4 H), 7.33 (d, J = 7.8 Hz, XyH, 2 H), 7.34 and 7.39 (AB, J = 2.2 Hz, 4 H), 7.57 (d, J = 7.8 Hz, XyH, 2 H) ppm.

4⊆3⊆4 (type B): in CDCl₃/CD₃OD (2/1, v/v) δ –1.84 (br m, β -CH₂, 4 H), –1.14 (br t, α -CH₂, 4 H), –0.65 (br m, γ -CH₂, 4 H), –0.06 (br m, δ -CH₂, 4 H), 0.73 (br m, ε -CH₂, 4 H), 2.87 (t, J = 7.8 Hz, α '-CH₂, 4 H), 4. 98 (s, XyCH₂, 4 H), 7.08 (s, 4 H), 7.17 and 7.22 (AB, J = 2.4 Hz, 8 H), 7.34 and 7.38 (AB, J = 2.2 Hz, 8 H), 7.45 (m, XyH, 4 H) ppm.

5⊆3 (type A): in CDCl₃/CD₃OD (9/1, v/v) δ –1.89 (br m, β -CH₂, 2 H), –1.20 (br t, α -CH₂, 2 H), –0.68 (br m, γ -CH₂, 2 H), –0.11 (br m, δ -CH₂, 2 H), 0.68 (br m, ε -CH₂, 2 H), 2.95 (t, J = 7.5 Hz, α '-CH₂, 2 H),

4.87, 4.98 (s, XyCH₂, 1:1, 4 H) ppm.

(3 \supset 5 \subset 3)_m (type C, m=1): in CDCl₃/CD₃OD (2/1, v/v) δ –1.92 (br m, β -CH₂ and β '-CH₂, 4 H), –1.24 (br t, α -CH₂ and α '-CH₂, 4 H), –0.67 (br m, γ -CH₂ and γ '-CH₂, 4 H), –0.22 (br m, δ -CH₂ and δ '-CH₂, 4 H), 0.42 (br m, ε -CH₂ and ε '-CH₂, 4 H), 4.89, 5.03 (s, XyCH₂, 1:1, 8 H), 6.76 (s, 4 H), 6.92 (pseudo-s, 8 H), 7.03 (s, 4 H), 7.05 and 7.10 (AB, J=2.4 Hz, 8 H), 7.14 and 7.19 (AB, J=1.8 Hz, 8 H), 7.32 and 7.38 (AB, J=2.0 Hz, 8 H), 7.33, 7.59 (2×d, J=7.9 Hz, XyH, 1:1, 4 H) ppm.

5.3**.**5 (type B): in CDCl₃/CD₃OD (2/1, v/v) δ –1.86 (br m, β -CH₂, 4 H), –1.14 (bt, α -CH₂, 4 H), –0.65 (br m, γ -CH₂, 4 H), –0.07 (br m, δ -CH₂, 4 H), 0.73 (br m, ε -CH₂, 4 H), 2.91 (t, J = 7.8 Hz, α '-CH₂, 4 H), 5.04 (s, XyCH₂, 4 H), 7.03 (s, 4 H), 7.17 and 7.22 (AB, J = 1.9 Hz, 8 H), 7.34 and 7.42 (AB, J = 2.2 Hz, 8 H), 7.38 (s, XyH, 4 H) ppm.

(3⊃5⊂3)_m (type C, m > 1): in CDCl₃/CD₃OD (9/1, v/v) δ –1.96 (br s, β -CH₂ and β '-CH₂, 4 H), –1.29 (br s, α -CH₂ and α '-CH₂, 4 H), –0.69 (br s, γ -CH₂ and γ '-CH₂, 4 H), –0.26 (br s, δ -CH₂ and δ '-CH₂, 4 H), 0.39 (br s, ε -CH₂ and ε '-CH₂, 4 H), 4.99 (s, XyCH₂, 8 H) ppm.

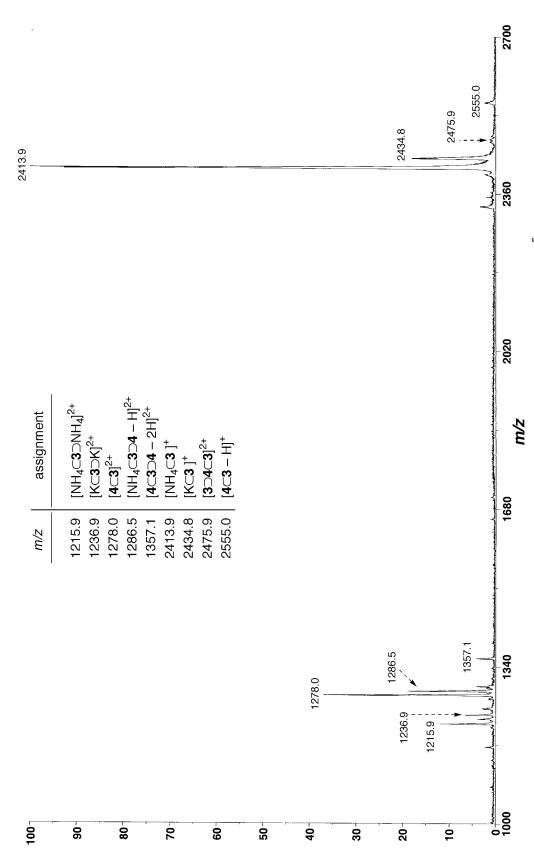


Figure S1. Segment of the ESI MS of an equimolar solution 3 and 4 (7.9 \times 10⁻⁵ M in CHCl₃/MeOH, 2:1).

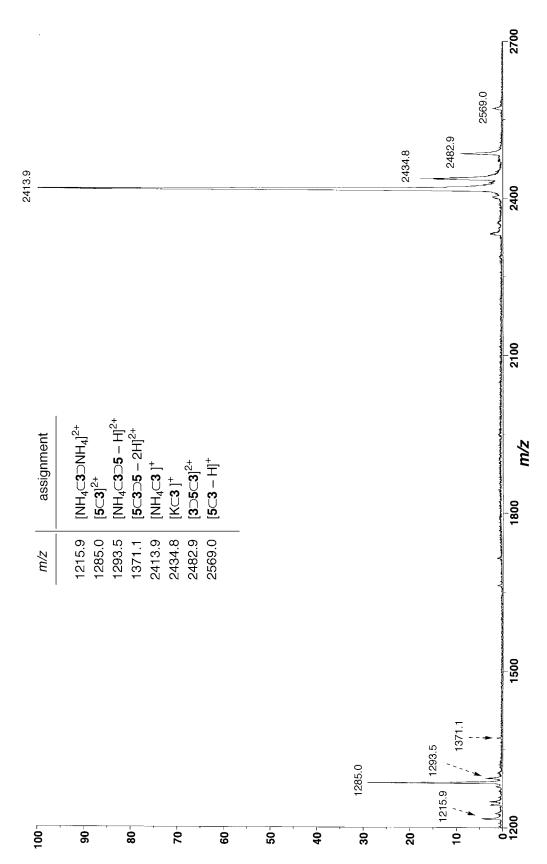


Figure S2. Segment of the ESI MS of an equimolar solution 3 and 5 (7.9 \times 10⁻⁵ M in CHCl₃/MeOH, 2:1).